The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography.
نویسندگان
چکیده
Digital in-line holography is used for measuring the three-dimensional (3-D) trajectory of a free-swimming freshwater copepod Diaptomus minutus, and simultaneously the instantaneous 3-D velocity field around this copepod. The optical setup consists of a collimated He-Ne laser illuminating a sample volume seeded with particles and containing several feeding copepods. A time series of holograms is recorded at 15 Hz using a lensless 2Kx2K digital camera. Inclined mirrors on the walls of the sample volume enable simultaneous recording of two perpendicular views on the same frame. Numerical reconstruction and matching of views determine the 3-D trajectories of a copepod and the tracer particles to within pixel accuracy (7.4 microm). The velocity field and trajectories of particles entrained by the copepod have a recirculating pattern in the copepod's frame of reference. This pattern is caused by the copepod sinking at a rate that is lower than its terminal sinking speed, due to the propulsive force generated by its feeding current. Consequently, the copepod sees the same fluid, requiring it to hop periodically to scan different fluid for food. Using Stokeslets to model the velocity field induced by a point force, the measured velocity distributions enable us to estimate the excess weight of the copepod (7.2x10(-9) N), its excess density (6.7 kg m(-3)) and the propulsive force generated by its feeding appendages (1.8x10(-8) N).
منابع مشابه
Copepod feeding currents: flow patterns, filtration rates and energetics.
Particle image velocimetry was used to construct a quasi 3-dimensional image of the flow generated by the feeding appendages of the calanoid copepod Temora longicornis. By scanning layers of flow, detailed information was obtained on flow velocity and velocity gradients. The flow around feeding T. longicornis was laminar, and was symmetrical viewed dorsally, but highly asymmetrical viewed later...
متن کاملCopepod flow modes and modulation: a modelling study of the water currents produced by an unsteadily swimming copepod.
Video observation has shown that feeding-current-producing calanoid copepods modulate their feeding currents by displaying a sequence of different swimming behaviours during a time period of up to tens of seconds. In order to understand the feeding-current modulation process, we numerically modelled the steady feeding currents for different modes of observed copepod motion behaviours (i.e. free...
متن کاملFeeding on dispersed vs. aggregated particles: The effect of zooplankton feeding behavior on vertical flux
Zooplankton feeding activity is hypothesized to attenuate the downward flux of elements in the ocean. We investigated whether the zooplankton community composition could influence the flux attenuation, due to the differences of feeding modes (feeding on dispersed vs. aggregated particles) and of metabolic rates. We fed 5 copepod species-three calanoid, one harpacticoid and one poecilamastoid-mi...
متن کاملCopepod feeding currents: Food capture at low Reynolds number1
High-speed motion pictures of dye streams around feeding Calanoid copepods revealed that these important planktonic herbivores do not strain algae out of the water as previously described. Rather, a copepod flaps four pairs of feeding appendages to propel water past itself and uses its second maxillae to actively capture parcels of that water containing food particles. The feeding appendages of...
متن کاملDanger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods.
Zooplankton feed in any of three ways: they generate a feeding current while hovering, cruise through the water or are ambush feeders. Each mode generates different hydrodynamic disturbances and hence exposes the grazers differently to mechanosensory predators. Ambush feeders sink slowly and therefore perform occasional upward repositioning jumps. We quantified the fluid disturbance generated b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 206 Pt 20 شماره
صفحات -
تاریخ انتشار 2003